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Abstract—The conventional physical-statistical models cannot
accurately predict the site-specific mmWave channel characteris-
tics when involving complex system configurations and geometric
information of transceiver locations. A framework of machine
learning assisted channel modeling approach is proposed, in
which the statistical models are leveraged for inter-cluster level
channel characterization and the propagation properties within
each kind of clusters are predicted via a novel set of cluster pre-
dictors. In particular, a case study of modeling forward through-
vegetation scattering effect is presented using the physics-based
and data-driven hybrid approach.

I. INTRODUCTION

As is well known, propagation channel modeling is an
essential part of new wireless communication system design,
evaluation, and deployment [1]. The cluster-based statistical
channel models reveal the mapping results between virtu-
al clusters and physical scatterers, which group the multi-
path components (MPCs) in both time and angular domains.
Consequently, the propagation channels are characterized by
several inter- and intra-cluster parameters following specific
distributions [2], while the existing standard models disregard
the differences in the statistics of intra-cluster parameters
among various cluster types [3]. Moreover, the universality and
accuracy of the physical-statistical channel models are usually
established based on sufficient channel data collected in mul-
tiple environments, coupled with the high-resolution channel
parameter estimation algorithm. Early studies on machine
learning (ML) based modeling of both large-scale and small-
scale channel characteristics [4]–[7] show great potential for
the improvement of channel prediction accuracy when using
the geometric information of transmitter (TX) and receiver
(RX) locations as input data. In particular, artificial neural
networks (ANNs) have been commonly introduced to find the
best functional fit of transceiver settings (including geometric
information, antenna patterns, and environmental features) and
path loss (or received signal strength) [4], [5]. Only a handful
of published works simultaneously fulfill the prediction of
path loss and spatialtemporal characteristics, along with more
complicated ML algorithms [6], [7].

However, the greatest drawback of these models lies in
that they can only be used in the cases having been trained
for specific environments. To remedy this situation, an ML-
assisted channel modeling approach is proposed, which inte-
grates the advantages of both physical models and ML-based
models. It is expected to improve the generalisation properties

by leveraging the prior knowledge of the physical structure of
concerned environments.

II. THE FRAMEWORK OF ML-ASSISTED CHANNEL
MODELING APPROACH

As shown in Fig. 1, multipath channels are normally mod-
eled by a sum of several clusters propagating through different
kinds of scatterers, such as buildings, trees, vehicles, and
human body. The interaction of electromagnetic wave and
these physical objects products cluster-level channel charac-
terization, including power attenuation and space-time channel
dispersions. Fig. 2 depicts the flowchart of the ML-assisted
predictive channel modeling approach. We first need to set
system configurations (e.g., carrier frequency and antenna
field patterns) and geographic information (e.g., scenarios,
LoS/OLoS/NLoS, and transceiver locations). Following the
standard procedure recommended in [3], the inter-cluster pa-
rameters are generated based on the statistical channel model,

Scenarios of 
Interest

UMi/UMa RMa/SMa InH Others

Dominant 
Scatterers 

Propagation mechanisms & material characteristics & geometric 
information

System 
configurations

• Carrier frequency and bandwidth
• Antenna radiation pattern and angle of direction
• Transceiver locations 

Fig. 1. Dominant scatterers in different indoor and outdoor environments.
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Fig. 2. Flowchart of the ML-assisted channel modeling.
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Fig. 3. Comparison of training data and predicting results for the forward through-vegetation scattering cluster. (a) vegetation attenuation; (b) DS; (c) ASA.

and in turn, clusters are placed in parameter space. In partic-
ular, the cluster type is assigned to each cluster together with
its physical characteristics. This step enables the differences
of spatio-temporal dispersion parameters between clusters to
be distinguished. Due to the fact that each cluster could be
mapped to the objects in physical space, it is reasonable to sep-
arately characterize the cluster-level channel interacting with
the corresponding scatterers. By leveraging a set of ML-based
predictors, the intra-cluster space-time channel parameters can
be sequentially generated for different cluster types.

This framework tries to show that, when predicting
mmWave channel characteristics in multiple environments,
limited site-specific channel data can be used to train the
networks for the predictive modeling of cluster-level channel
characteristics along with the environmental features. Another
advantage of this framework is that it naturally integrates the
blockage effect in cluster generation rather than adding more
steps for the application of blockage model [3]. To enable this
framework, we first need to promote a novel set of cluster
predictors, that can predict the complex intra-cluster level
propagation characteristics over different kinds of physical
objects.

III. A CASE STUDY OF MODELING
THROUGH-VEGETATION SCATTING EFFECT

In particular, the mmWave propagation characteristics of
the forward vegetation scattering cluster is investigated in this
work using hybrid physics-based and data-driven modeling
approach. Based on the channel data collected from field
measurements and ray-tracing simulation, several channel pa-
rameters can be estimated together with the key impact factors
of system configurations. Consequently, these channel data is
labeled with environment features and used for training the
data-driven model.

For instance, ANN model is employed to predict vegeta-
tion attenuation and spatio-temporal spreads of the forward
through-vegetation cluster. The network is trained with di-
rectional channel sounding and simulation data collected in
the identical vegetated street canyon environment at 28 GHz
(total 759 effective channel data samples), combining with the
inputs of several key impact factors extracted from physics-
based observations (e.g., three TX antenna downtilt of 10°,
20°, and 30°). Apart from the basic geometric information
of transceivers (TX and RX coordinates), two propagation
environment features c1 and c2 are converted as inputs to the
ANN (i.e., c1 labels the RX inside or outside vegetation and

c2 indicates whether the RX location is directly below the fo-
liage), which could greatly enhance its predicting performance
to the variation of propagation environments. The outputs of
the ANN include the estimated channel parameters, such as
vegetation attenuation, delay spread (DS), and azimuth angular
spread of arrival (ASA). Fig. 3 shows the training results with
the optimal number of hidden neurons of 10 in terms of the
overall regression R values and sufficient mean square error
(MSE).

IV. CONCLUSION

In this paper, a framework of the ML-assisted modeling
approach has been proposed, which is expected to provide a
scalable and robust channel model for multiple environments.
To enable this framework, the scattering effect of the forward
vegetated cluster is predicted using hybrid physics-based and
data-driven modeling approach. Comparing with the physical-
statistical model, training results show that the proposed hybrid
predictive model has higher prediction accuracy and greater
generalization ability in terms of the site-specific through-
vegetation cluster parameters, such as vegetation attenuation,
delay spread, and angular spread.
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